Identification of the MxiH needle protein residues responsible for anchoring invasion plasmid antigen D to the type III secretion needle tip.

نویسندگان

  • Lingling Zhang
  • Yu Wang
  • Andrew J Olive
  • Nathan D Smith
  • William D Picking
  • Roberto N De Guzman
  • Wendy L Picking
چکیده

The pathogenesis of Shigella flexneri requires a functional type III secretion apparatus to serve as a conduit for injecting host-altering effector proteins into the membrane and cytoplasm of the targeted cell. The type III secretion apparatus is composed of a basal body and an exposed needle that is an extended polymer of MxiH with a 2.0-nm inner channel. Invasion plasmid antigen D (IpaD) resides at the tip of the needle to control type III secretion. The atomic structures of MxiH and IpaD have been solved. MxiH (8.3 kDa) is a helix-turn-helix, whereas IpaD (36.6 kDa) has a dumbbell shape with two globular domains flanking a central coiled-coil that stabilizes the protein. These structures alone, however, have not been sufficient to produce a workable in silico model by which IpaD docks at the needle tip. Thus, the work presented here provides an initial step in understanding this important protein-protein interaction. We have identified key MxiH residues located in its PSNP loop and the contiguous surface that uniquely contribute to the formation of the IpaD-needle interface as determined by NMR chemical shift mapping. Mutation of Asn-43, Leu-47, and Tyr-50 residues severely affects the stable maintenance of IpaD at the Shigella surface and thus compromises the invasive phenotype of S. flexneri. Other residues could be mutated to give rise to intermediate phenotypes, suggesting they have a role in tip complex stabilization while not being essential for tip complex formation. Initial in vitro fluorescence polarization studies confirmed that specific amino acid changes adversely affect the MxiH-IpaD interaction. Meanwhile, none of the mutations appeared to have a negative effect on the MxiH-MxiH interactions required for efficient needle assembly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deoxycholate interacts with IpaD of Shigella flexneri in inducing the recruitment of IpaB to the type III secretion apparatus needle tip.

Type III secretion (TTS) is an essential virulence function for Shigella flexneri that delivers effector proteins that are responsible for bacterial invasion of intestinal epithelial cells. The Shigella TTS apparatus (TTSA) consists of a basal body that spans the bacterial inner and outer membranes and a needle exposed at the pathogen surface. At the distal end of the needle is a "tip complex" ...

متن کامل

Genetic Dissection of the Signaling Cascade that Controls Activation of the Shigella Type III Secretion System from the Needle Tip

Many Gram-negative bacterial pathogens use type III secretion systems (T3SSs) for virulence. The Shigella T3SS consists of a hollow needle, made of MxiH and protruding from the bacterial surface, anchored in both bacterial membranes by multimeric protein rings. Atop the needle lies the tip complex (TC), formed by IpaD and IpaB. Upon physical contact with eukaryotic host cells, T3S is initiated ...

متن کامل

The needle component of the type III secreton of Shigella regulates the activity of the secretion apparatus.

Gram-negative bacteria commonly interact with eukaryotic host cells by using type III secretion systems (TTSSs or secretons). TTSSs serve to transfer bacterial proteins into host cells. Two translocators, IpaB and IpaC, are first inserted with the aid of IpaD by Shigella into the host cell membrane. Then at least two supplementary effectors of cell invasion, IpaA and IpgD, are transferred into ...

متن کامل

A repulsive electrostatic mechanism for protein export through the type III secretion apparatus.

Many Gram-negative bacteria initiate infections by injecting effector proteins into host cells through the type III secretion apparatus, which is comprised of a basal body, a needle, and a tip. The needle channel is formed by the assembly of a single needle protein. To explore the export mechanisms of MxiH needle protein through the needle of Shigella flexneri, an essential step during needle a...

متن کامل

Liposomes recruit IpaC to the Shigella flexneri type III secretion apparatus needle as a final step in secretion induction.

Shigella flexneri contact with enterocytes induces a burst of protein secretion via its type III secretion apparatus (TTSA) as an initial step in cellular invasion. We have previously reported that IpaD is positioned at the TTSA needle tip (M. Espina et al., Infect. Immuno. 74:4391-4400, 2006). From this position, IpaD senses small molecules in the environment to control the presentation of Ipa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 282 44  شماره 

صفحات  -

تاریخ انتشار 2007